
PostScript
Speedup Secrets
Don Lancaster

Apprentice

47Aug/Sep 1992

Those long PostScript page makeready times are
simply not needed. Our resident PostScript guru

reveals how to optimize your way around them.T he great PostScript general
purpose computer language
from Adobe Systems is often
wrongly accused of being

slow. In reality, the latest versions of
PostScript can be made blindingly
fast. With some care, all of those long
page makeup times can be outright
eliminated.

They are flat out not needed.
The problem lies not in today’s fast

PostScript language, but in klutzy
applications code, the abysmally bad
drivers, glacial comm, and the poor
end user understanding of the "not
me!" con that’s coming down.

Ferinstance, when I’m reprinting a
self-collating duplex page in one of
my new Book-on-demand published
volumes, I’ll routinely have a page
makeup time of zero to four seconds.
Many pages typically print at the full
mechanical speed of the printer. Page
after new page after new page. That
is for a 6000 character multi-column
page with an ultra fancy justification,
headers, footers, and one or even two
technical figures having a medium
complexity. All done from a typical
page file that is between 8K and 12K
in length. I also consider the "speed"
measurements you will find in most
PostScript printer reviews and ads to
be laughingly absurd.

Let us look at some of the secret
insider tricks to blinding PostScript
speed. Some of these will apply to
anyone anytime. The others are best

applied as speed optimization hacks
specifically for any copy that is to be
reprinted a number of times in the
future. We might as well…

Start With The Obvious
By far your quickest and cheapest

PostScript speedup trick is to leave the
printer on between jobs! Whenever any
font character first gets used, it gets
built up from an outline description.
A bitmap copy of that character then
gets saved to a font cache for potential
later reuse on current or future jobs.
Reuse of a cached character can be as
much as one thousand times faster,
which translates to an overall 2:1 to
3:1 speedup. On power down, your
old font cache vanishes.

A second obvious ploy is to make
sure the printer resets after each job. To
a solid green LED display. Otherwise
several minutes will pass by before
a timeout and allowable reuse. Most
drivers do take care of this resetting
automatically. If not, you can inquire
your printer status by a control-T,
and reset it with a control-C followed
by a control-T one second later. Be
certain to get the status:idle message
back onto your host screen.

One rather popular speedup stunt

is to disable your test page. But you
should not be turning your machine
off and on that often in the first place.
And losing your first job because the
toner cartridge needed shaken or the
density dial needed adjusted negates
any time saved. Finally, a test page
that starts taking excessively long to
output could warn you of impending
hard disk disaster and the need for
an immediate rebuild.

Most systems do offer a software
utility or front panel option to select
a test page. Ultimately, the following
PostScript code is generated…

serverdict begin 0 exitserver
 statusdict begin
 false setdostartpage end quit

Your choice of a PostScript printer
and firmware can make an incredible
speed difference. We have now gone
through five or more generations of
firmware, each of which gave you a
thirty percent speedup from earlier
versions. Except for that quantum
leap up to PostScript level II, which
more than doubled throughput.

Thus, for maximum speed, you’ll
want to be certain to use a genuine
Adobe PostScript level II and a RISC,
"turbo", "co-processed" or otherwise

48 PC TECHNIQUES

POSTSCRIPT SPEEDUPSPOSTSCRIPT SPEEDUPS

new from
DON LANCASTER

SYNERGETICS
Box 809-PCT

Thatcher, AZ 85552
[602] 428-4073

FREE VOICE HELPLINE VISA/MC

LASERWRITERTM SECRETS
A Book/Disk combination crammed full of free
fonts, insider resources, utilities, publications,
workarounds, fontgrabbing, more. For most any
PostScript printer. Mac or PC format. $39.50

THE WHOLE WORKS
All of the very best in PostScript books, software,
utilities, and videos by all the major authors in
one money-saving startup package. Includes…

PostScript Tutorial and Cookbook
Incredible Secret Money Machine
Understanding PS Programming
Two hours free Guru consulting
PostScript Reference Manual II
PostScript: A Visual Approach
Apple LaserWriter Reference
PostScript Program Design
PostScript Beginner Stuff
PostScript Show and Tell
Intro to PostScript video
A PSRT GEnie Sampler
Thinking in PostScript
Real World PostScript
LaserWriter Secrets I
Ask the Guru II & III
Type I Font Format

All items also available separately. A real bargain
at a UPS shipping prepaid price of $349.50.

BOOK-ON-DEMAND
RESOURCE KIT

Scads of the Guru’s Book-on-Demand publishing
resources, secrets, techniques, and experiences
gathered together. Includes book, disk, lists, and
materials samples. Brand new at $39.50.

 POSTSCRIPTTM

BEGINNER STUFF
Don and Bee’s PS course notes in a convenient
self-study form. A heavy emphasis on "out the
door" products, notepads, ads, resumes, badges,
labels, announcements, letterheads, business
cards, menus, heaping bunches more. $39.50

ASK THE GURU I - II - III
Reprints from Computer Shopper. $24.50 each.

INCREDIBLE SECRET
MONEY MACHINE II

Updated 2nd edition of Don’s classic on setting
up your own technical or craft venture. $18.50

FREE SAMPLES
Well, nearly free anyway. Almost. Do join us on
GEnie PSRT to sample all of the Guru’s goodies.
The downloading cost on a typical Guru file is 21
cents. Call (800) 638-9636 for connect info.

Circle 153 on reader service cardCircle 153 on reader service card

enhanced printer controller board.
One fine source of retrofit printer

upgrades and speedups is Thompson
and Thompson at (714) 855-3838.

Many mid- to high-range printers
include a local SCSI hard disk option.
If a hard disk is available, do be sure
to use it. First, because you now have
a "permanent" and a much expanded
font cache. Second, because you can
now immediately access hundreds of
fonts in a fraction of a second.

Third, because you can put files,
utilities, and downloads onto disk.
Eliminating the need for any comm
hassles. And fourth, your hard disk
lets you do many longer production
tasks largely unattended by either a
human operator or a computer.

Two tips: The Apple LaserWriter
printers do not necessarily require
Apple SCSI hard drives. But they do
demand a SCSI drive that can return
its size back to the printer. Be sure to
get a written compatibility guarantee
before buying any third party drive.
Most other PostScript printers also
demand SCSI drives that can return
their size to the requestor.

Also, some hard disks can not be
initially formatted with a PostScript
printer. Instead, you may have to do
your very first track-creating SCSI
formatting using some other host
machine. And then reformat with
PostScript. Watch this detail.

The Click-to-clunk Curve
Your central key to all PostScript

print time speedups will lie in first
understanding and then optimizing
the top secret Click-to-clunk curve.

The Click-to-clunk parameter is the
ultimate end user measurement of
printer throughput. It is a measure of
the time which will elapse between
your keystroke or the mouse "click"
requesting a page and the "clunk" of
that page dropping onto the output
tray. Factors which enter into your
Click-to-clunk curve do include your
host processing speeds, your driver
klutziness, network behavior, the
de-facto effective baud rates, your
comm supervisory overhead, and the
actual printer mechanical speed.

Oh yes, the speed of your current
PostScript interpreter sometimes
might also have a slight effect here.
But often a totally negligible one.

And, as we’ll shortly see, faster
PostScript code might even end up
slowing you down!

A typical Click-to-clunk curve is
shown in figure one. It turns out that
for maximum possible speed on any page,
there is one clearly optimum source file
length associated with any PostScript
printing job. This optimum dip very
much shifts with your selection of
printer, host, comm, hard disk usage,
and programming style. But a good
"in the dip" solution for what you
have now often will form a superb
starting point for future speedups.

Why the unusual curve shape? The
answer to this lies in how PostScript
works. Some characters first have to
be sent to the Postscript interpreter.
Sooner or later, enough characters
are received that the interpreter can
start doing something useful.

Then a race begins.
Characters go in at a comm speed

I like to define as the effective baud
rate, set regardless of which selected
comm method is in use. The effective
baud rate does include all of your
supervisory handshaking, host file
operations, network collisions, and
any similar delays.

Anyhow, characters get consumed
at a rate that is set by the PostScript
interpreter’s needs. Eventually all
characters are received and finally
processed. Sometimes the characters
pile up in an input buffer; other times
the interpreter has to sit around and
wait for new input. Your optimum
speed obviously happens whenever
the characters arrive at precisely the
speed they can be processed, with no
pileups and no waiting.

The longer file lengths are often
associated with simpler PostScript
processing tasks, while the short file
lengths often may require extensive
PostScript computation. Hence the
sharp dip in the Click-to-clunk curve
at a clearly defined optimum.

There are three distinct areas to the
Click-to-clunk curve. Each area has
profoundly different implications for
your speedup optimizations…

Area "III" – Baud Rate Limited
In area III, you will be baud rate

limited. The interpreter is starved for
characters and has to wait around
twiddling its bit buckets until more
data arrives. Most casual PostScript
users most of the time usually end up
ridiculously baud rate limited.

Some typical effective baud rates
are shown to you in figure two. In
general, and regardless of the comm

49Aug/Sep 1992

FIGURE 1 – The secret PostScript Click-to-clunk curve.

RUNTIME FILE LENGTH

C
L

IC
K

-T
O

-C
L

U
N

K

T
IM

E

REGION "I"
has balanced
comm and PS

makeready

REGION "III"
is severely
baud rate

limited

REGION "II"
is PostScript

interpreter
limited

MOST USERS
will start out six
blocks thataway

method you use, it will be far slower
than you suspect. It is thus super
important to both measure and know
all your effective comm rates. Until
quite recently, AppleTalk PostScript
comm was actually slower than plain
old serial comm. Which led to the
hilarious ridiculosity of that Apple
IIe game paddle port ending up four
times faster than the best and fastest
Macs whenever it came to sending
PostScript code. But don’t smirk just
yet. The game paddle port at a totally
honest 59600 baud was also twice as
fast as IBM parallel ports and eight to
ten times faster than most IBM serial
communications.

Note that many of the brand new
Ethernet comm schemes still have to
overlay AppleTalk, and thus will only
end up modestly faster.

By far your optimum PostScript
comm is to talk directly to your SCSI
hard disk or to create some sort of
Shared SCSI Comm that lets both your
host and your printer interact with
the same hard disk or CD drives. This
gives you effective baud rates in the
one million range. Sadly, the major
players are all less than enthusiastic
over properly documenting and then
providing for shared SCSI comm. So,
you have to set this up by yourself on
a custom basis.

Although adjudication is the main
criticism against a multi-host shared
SCSI comm, it can become an easily
avoided non-issue in the PostScript
environment. More info on shared
SCSI comm appears on GEnie PSRT.

If you are baud rate limited, the speed
of your PostScript processing does not
matter in the least. It is thus totally
pointless to try and do any PostScript
area III code speedups.

In fact, any PostScript speedups
done while in area III may even slow
you down, if your text files happen to
get longer in the process.

Your big two area III optimization
strategies are obvious: Measure and
raise your effective baud rate. Then you
shorten and rearrange your files.

The simplest way to measure your
effective baud rate is to make up a
text file of 10,000 or 100,000 comment
characters, ending with a showpage
command. Then, you use a plain Jane
stopwatch to measure your de-facto
Click-to-clunk time. For simplicity,
assume ten bits per character.

Be absolutely certain to select a
PostScript comm, print buffering,

and networking method which give
you a full two way data transfer, that
include the on-screen error messages
and your ability to fully record host
returned data. More details on this
appeared in my PostScript Startup
Secrets in the Dec/Jan 1992 issue of
PC Techniques.

Note that a sending echo on your
host screen can dramatically reduce
your PostScript comm speeds. Watch
your characters going out only when
debugging.

To reduce the characters in your
files, first print-to-disk. And then
inspect the runtime files with a word
processor or editor. A first and very
obvious step is send nothing that is not
needed. Comments can be reduced or
eliminated. Downloaded preambles,
dictionaries, or fonts can get done
once persistently rather than on a
job-by-job basis. Or read from hard
disk. If several figures need the same
dictionary, consider sending just one
dictionary with common access.

Characters can get eliminated by
throwing away the spaces adjacent to
self-delimiting symbols. Changing
numeric formats to avoid leading
zeros and excessive accuracy can also
dump unneeded characters. There’s
not normally any logical reason to
request any page location to better
than 0.2 pixel accuracy.

Shorter proc names can make a

surprising difference in file lengths.
Use mt or just m instead of moveto,
and so on. But be careful with lineto,
because lt and ln are both reserved
commands. li works fine here.

Another character reducing ploy is
to eliminate those oft retransmitted
characters such as the "0", "0" and "32"
in most awidthshow commands.

Consider doing more with your
PostScript computer and less with
your host. By giving PostScript more
to do, you can usually shorten your
"do this" files and thus move away
from a severe baud rate limit.

One blatant example is to justify
entire text lines using awidthshow,
rather than individual words using
ashow. This can sometimes shorten
your files by a factor of three.

Yet another area III ploy is to give
PostScript something intense to do early
in your file, so that characters can pile
up at the same time that PostScript is
busy on something exotic. While a
great paper idea, this may be hard to
implement. Especially since many
files start with long preambles.

Area "II" – Processor Limited
Much more rarely, you might end

up in area II, where you really will be
PostScript processor limited. In this
case, enough characters are always
available and the PostScript speed is
in fact your bottleneck.

50 PC TECHNIQUES

POSTSCRIPT SPEEDUPSPOSTSCRIPT SPEEDUPS

FIGURE 2 – Some popular PostScript effective baud rates.

LOG scale of
effective baud rate

1K

10K

100K

1 Meg
Direct SCSI local disk access

Custom shared SCSI comm

Mac, Font Downloader 5.0.1 via Appletalk

Mac, Font Downloader 5.0.1 via Ethernet

Apple IIe Game Paddle Port

Typical 386 Parallel Port

Older Mac Font Downloader 3.1 via Appletalk

386, Procomm, 19200 baud, no screen echo

286, Crosstalk, 9600 baud, screen echo

For instance, a full page fractal
fern can be requested with only a few
hundred bytes of code. The math-
intensive results will take far longer
to generate than it does to send the
code, even at a glacial comm rate.

Your specific solution to the fern
problem is to do the fern once and
capture it back to host as a reusable
image file. Your general solution to
area II speedups is to give PostScript
fewer and simpler tasks to do, even if
these new tasks may require somewhat
longer file lengths.

Timing utilities could get used to
measure which tasks take how long.
This might get tricky, though. Some
operations do get deferred till paper
feeding time. Note that baud rate
limited comm times could easily be
separated from execution times by
defining and deferring a proc, then
executing it later inside a timing
loop. Note also that short times can
be accurately measured by repeating
the process a hundred or a thousand
times inside of a repeat loop.

Some obvious speedup tricks here
include avoiding irregular clipping
intervals, pixel line remapping, large
oddball screens, trig, and fractals.

Excessive detail can chew up time.
On typical engineering curves, there
is usually no point in plotting things
beyond sub-pixel accuracies. Use the
minimum number of points you can

to still give you just barely acceptable
results at your target resolution.

Inelegantly selecting your fonts is
a great way to waste both proc time
and virtual memory. Do observe that
findfont, scalefont, and makefont are all
slow and gobble up VM. But setfont is
fast and needs zero VM. Thus, you
should initially predefine all of your
fonts as prescaled font dictionaries.
Then call them later as needed with
setfont. Ferinstance, at the start of
your file, do a…

 /font1 /Helvetica findfont
 10 scalefont def

Note the absence of {..} deferred
action. Which immediately predefines
font1 as an ultra powerful, but little
used and less understood prescaled
font dictionary.

Later on, as needed, do a…

 font1 setfont

My favorite PostScript speedup
tool is table lookup. Which, besides
walking the dog and dispensing soft
ice cream, can leap tall buildings in a
single bound. Never calculate (or even
test for) something that you can look up
instead!

While PostScript seemingly lacks
the case command of other high level
languages, this elegant construct
quickly handles option picking and
loads more…

 [{proc0} {proc1} ... {procn}]
 exch get exec

Any zero on stack quickly executes
proc0. A one does proc1, and so on.
Test and logic free. Note that table
lookup is also handy for redefining
characters or actions taken on any
given character.

PostScript level II offers a slew of
new features that could lead to very
dramatic speedup possibilities. My
favorites here now include cached
user defined procs, forms capabilities,
newly open font path grabbing, binary
sequences and file conversion filters.

Your most powerful and the most
general PostScript speedup tools do
involve compiling and distilling. We
will look at these shortly. Because of
the extra front end time and operator
effort, these tools are best used on
files that are to get reprinted at least
once in the future.

Area "I" – Balanced Execution
The dip in area I is the best you can

do with what you have so far. Your
optimization strategy to go beyond
area I is to pick a new Click-to-clunk
curve. You might do this with faster
hardware, less-glacial comm, newer
firmware, rethunk apps, improved
algorithms, better hard disk usage, a
more elegant programming style,
and a fresh look at what really needs
done and what does not.

Once again, your Click-to-clunk
curve very much depends upon you,
your hardware, your applications,
the comm, and your programming
style. But any present "in the dip"
solution is usually a good starting
point for future speedups.

Using Images
The PostScript image operator can

be a very powerful tool – whenever it
is not being severely abused. While
great for high quality photographic
halftones, it is totally inexcusable to
use image as a sloppy crutch to avoid
"real" PostScript translations from
other graphics standards. Or to use
image for a plain old logo where a
few dozen bytes of hand-crafted or
application-traced code can do a far
cleaner job much faster.

Typically, a PostScript 300 DPI
image needs 22K bytes per square
inch per bit of gray level per color. It
is thus rather easy to get up into
megabyte file sizes. And, of course,

51Aug/Sep 1992

FIGURE 3 – Typical Adobe Distillery "compiled" PostScript code.
 /bdef { bind def } bind def /ldef { load def } bdef
 /W { moveto widthshow } bdef /AW { moveto awidthshow } bdef
 /MF { exch findfont exch makefont setfont } bdef
 /DF { selectfont currentfont def } bdef /F /setfont ldef

/Palatino-Bold [10 0 0 10.1 0 -8] MF
-0.3 0 32 0.1 0 (Start With The Obvious) 236.339 325.1 AW
/F1 /Palatino-Roman 9.5 DF
0.292065 0 32 0.198678 0 (By far your quickest and cheapest) 225.0 303.1 AW
-0.292759 0 32 0.101207 0 (PostScript speedup trick is to) 215 292.1 AW
/F2 /Palatino-Italic 9.5 DF
-0.292759 0 32 0.101207 0 (leave the) 341.399 292.1 AW
F2 F -0.144955 0 32 0.125841 0 (printer on between jobs!) 215 281.1 AW
F1 F -0.144955 0 32 0.125841 0 (Whenever any) 310.039 281.1 AW
F1 F 0.428717 0 32 0.221453 0 (font character first gets used, it gets) 215 270.1 AW
F1 F 0.2575 0 32 0.192917 0 (built up from an outline description.) 215 259.1 AW
F1 F 0.0425076 0 32 0.157085 0 (A bitmap copy of that character then) 215 248.1 AW
F1 F -0.171851 0 32 0.121358 0 (gets saved to a) 215 237.1 AW
F2 F -0.171851 0 32 0.121358 0 (font cache) 280.246 237.1 AW
F1 F -0.171851 0 32 0.121358 0 (for potential) 319.364 237.1 AW
F1 F 0.380548 0 32 0.213425 0 (later reuse on current or future jobs.) 215 226.1 AW
F1 F -0.0919617 0 32 0.134673 0 (Reuse of a cached character can be as) 215 215.1 AW
F1 F 0.799381 0 32 0.28323 0 (much as one thousand times faster,) 215 204.1 AW
F1 F 0.548458 0 32 0.24141 0 (which translates to an overall) 215 193.1 AW
/F3 /Palatino-Roman 9 DF
0.548458 0 32 0.24141 0 (2:1) 351.11 193.1 AW
F1 F 0.548458 0 32 0.24141 0 (to) 363.085 193.1 AW
F3 F 0.667083 0 32 0.26118 0 (3:1) 215 182.1 AW
F1 F 0.667083 0 32 0.26118 0 (speedup. On power down, your) 227.034 182.1 AW
F1 F 0.06 0 32 0.16 0 (old font cache vanishes.) 215 171.1 AW
F1 F 0.647822 0 32 0.25797 0 (A second obvious ploy is to) 225.0 160.1 AW
F2 F 0.647822 0 32 0.25797 0 (make) 354.604 160.1 AW
F2 F 0.144363 0 32 0.17406 0 (sure the printer resets after each job) 215 149.1 AW
F1 F 0.144363 0 32 0.17406 0 (. To) 358.473 149.1 AW
F1 F -0.119264 0 32 0.130123 0 (a solid green) 215 138.1 AW
F3 F -0.119264 0 32 0.130123 0 (LED) 272.552 138.1 AW
F1 F -0.119264 0 32 0.130123 0 (display. Otherwise) 290.906 138.1 AW
F1 F 0.68911 0 32 0.264852 0 (several minutes will pass by before) 215 127.1 AW
F1 F 0.214405 0 32 0.185734 0 (a timeout and allowable reuse.) 215 116.1 AW
showpage

% Total non-header length: 2088 bytes
% Baud rate limited run time: 1.09 seconds at an honest 19200 baud
% Raw PostScript run time: 0.31 seconds on LaserWriter G

severely baud rate limit yourself.
So, step uno on image speedup is

to never use that image operator when
much shorter lower-level PostScript code
can reasonably be substituted. One trick
that dramatically simplifies logos is
to capture the actual full sized paths
of those few special font characters
used. This eliminates either the need
for bulky image code or the need to
tow along an entire special font.

Second, if possible, do keep any
essential images on a local SCSI hard
disk or CD ROM to avoid baud rate
comm limits. Third, always use the
minimum image size, resolution, and
number of gray levels.

Fourth, watch your image string
coding. The image operator expects a
string of data values. On your typical
non-transparent serial data channels,
this used to need a hex-ASCII coding
of two characters per byte.

PostScript level II allows you to
substitute an ASCII85 coding which
recodes four bytes as five printable
characters. You also have the option
of using a transparent data channel
or binary encoding formats. Any of
these tricks can cut your image file
sizes nearly in half.

Finally, PostScript Level II offers
lots of brand new image compaction
schemes. These include run length
encoding, fax, DCT, LZW, and TIFF.
See the Red Book II for details.

A tradeoff is involved between
processing times and compressed file
sizes. One that is highly application
dependent. Thus, the extreme image
compression algorithms may not
help as much as you expect.

Compiled PostScript?
Pretty near any general purpose

computer language will give you an
option of interpreting or compiling
your code. Compiling usually gives
you much faster executing code that
needs far less in the way of machine
resources. Compiling also often can
divorce your final output from the
applications generating code, leading
to license-free and restriction free
run-time executions. Disadvantages
of compiling include the extra front
end time and effort required, and
that compiled code is often very hard
to read or edit.

Compiled code often gets longer,
and sometimes appallingly so.

A true compiling is tricky to do in
PostScript, so we will use a looser

pseudocompiling definition of "Do
stuff once now to speed up future
print times". Compiling is best for
Book-on-demand publishing where
you already know you will do lots of
reprinting in the future. On very long
or complex files, compiling could be
used for one-use phototypesetting.
Especially if a few minutes head end
work can save you hours of big buck
typesetting charges.

Another really big advantage of
PostScript compiling is that you can
now create compiled EPS files that
can be mailed, emailed, or modemed
anywhere. Device independently.

This ends up insanely great for
such things as giving first generation
digitally mastered printed circuit
layouts to readers of an electronic
magazine. Or dialplates, meter faces,
layout templates, any quilt patterns,
weaving drafts, or craft decals. As
plain old textfiles that will quickly
run on any computer. With no trace
(and thus no royalties) of the fancy
CAD-CAM layout or whatever code
that created the original art.

PostScript has a bind operator that
substitutes underlying procedures
for name lookups when it gets used.
This gives you a "free" ten to fifteen

percent speedup. On the other hand,
binding takes time. So it should not
be used if a proc is only rarely called.
Binding also locks you into all your
definitions as they exist at the time
bind is executed. So you cannot later
change the meaning or purpose of
bound code.

PostScript Level II also offers user
paths. This works the same as the font
cache. The first time your path gets
used, it gets executed in the usual
way and saved as a bitmap to your
cache. Reuse of your path can be
hundreds or even thousands of times
faster. On any business card where
most of the time is spent on the logo,
user paths could give you nearly a
twelve times speedup, since the final
eleven logos come out of the cache.

Tricks with forms also give you
somewhat of a compiling action. On
older PostScript, you would put a
background down, add a first name
and address, and then do a copypage.

Then you erase only the name and
address, put down the next address,
and use copypage again. There’s no
need to reprint the fancy background
each time. Level II PostScript makes
background sharing even faster by
way of a cached forms capability.

52 PC TECHNIQUES

POSTSCRIPT SPEEDUPSPOSTSCRIPT SPEEDUPS

FIGURE 4 – Typical Guru Double Distilled PostScript code.
 /b {bind def} bind def
 /D {exch findfont exch scalefont setfont} b
 /M {exch findfont exch makefont setfont} b
 /a {moveto 0 32 4 2 roll 0 exch awidthshow} b

 /Palatino-Bold [10 0 0 10.1 0 -8] M
 -.3 .1(Start With The Obvious)236 325 a
 /Palatino-Roman 9.5 D
 .29 .2(By far your quickest and cheapest)225 303 a
 -.29 .10(PostScript speedup trick is to)215 292 a
 -.14 .13(Whenever any)310 281 a
 .43 .22(font character first gets used, it gets)215 270 a
 .26 .19(built up from an outline description.)215 259 a
 .04 .16(A bitmap copy of that character then)215 248 a
 -.17 .12(gets saved to a)215 237 a
 -.17 .12(for potential)319.3 237 a
 .38 .21(later reuse on current or future jobs.)215 226 a
 -.09 .13(Reuse of a cached character can be as)215 215 a
 .80 .28(much as one thousand times faster,)215 204 a
 .55 .241(which translates to an overall)215 193 a
 .55 .24(to)363 193 a
 .67 .26(speedup. On power down, your)227 182 a
 .06 .16(old font cache vanishes.)215 171 a
 .65 .26(A second obvious ploy is to)225 160 a
 .14 .17(. To)358.4 149 a
 -.12 .13(a solid green)215 138 a
 -.12 .13(display. Otherwise)290.9 138 a
 .69 .26(several minutes will pass by before)215 127 a
 .21 .19(a timeout and allowable reuse.)215 116 a
 /Palatino-Italic 9.5 D
 -.29 .10(leave the)341.3 292 a
 -.14 .13(printer on between jobs!)215 281 a
 -.17 .12(font cache)280.2 237 a
 .65 .26(make)354.6 160 a
 .14 .17(sure the printer resets after each job)215 149 a
 /Palatino-Roman 9 D
 .67 .261(3:1)215 182 a
 .55 .24(2:1)351 193 a
 -.12 .13(LED)272.5 138 a
 showpage

 % Total non-header length: 1375 bytes
 % Baud rate limited run time: 0.716 seconds at an honest 19200 baud
 % Raw PostScript run time: 0.22 seconds on LaserWriter G

One extremely versatile PostScript
compiling process involves a popular
shareware program called…

The Adobe Distillery
To use the Adobe Distillery, your

PostScript code has to be in the exact
final form you want it, and you have
to want to reprint your code at least
one time in the future. You also must
definitely not be baud rate limited,
since the somewhat longer distilled
files will profoundly speed you up in
area II but significantly slow you down
in area III. Thus, distilled code is best
used from a local SCSI hard disk.

At any rate, the distillery simply
asks "What is the absolute minimum
information needed to make full size
marks on this page?" That essential
information is returned to your host
for recording. Thus, instead of doing
any nonlinear perspective graphics
transformation, only the fixed position
results of that transformation will get
saved. Instead of making complex fill
justification calculations, only those
specific results get saved.

Figure three shows an example of
distilled code. Properly applied, the
Distillery can dramatically speed up
your files. It can sometimes shorten

them if any long preambles can be
eliminated.

There are several Distillery bugs,
such as ignoring superscripted and
subscripted fonts unless their height
and width differ. The clipping is not
done properly. The Distillery doesn’t
know how to reuse an existing font
path for opaque icons and such.

Because it trys to process anything
from anybody, the distillery is also
very much program style dependent.
So you may want to work with it for
a while before you can get in sync
with it and best tap its abilities.

Certain program constructs could
cause the Distillery to generate lots of
unbelievably long code. So you just
might want to manually intervene.
Use Distilled results for the majority
of stuff that Distillery does well. And
revert to bits of the origional code or
substitute a hand crafted something
whenever you can clearly gain any
speed or size advantage.

To go beyond the Distillery, I use a
sneaky trick I call…

Double Distilling
Properly used, Distillery files are

fast and compact. But I found I could
make the code even faster and more

compact by playing around with
each individual Distillery line. One
example appears in figure four. I
often gain 33 percent length and 25
percent speed.

The modified lines eliminate any
characters that are not really needed,
reformat all numbers to drop leading
zeros, and reduce the final position
accuracy to one tenth of a point. I
also rearrange the line positions in
the file so that each font only will get
chosen once per page.

Double distilling is very much a
custom process. I’ve uploaded a
MAUDEDOC.PS tool to GEnie PSRT
that could get you started. This is a
very general tool. It lets you scan any
document line by line and modify
whatever lines you wish in any way
you care to.

You could further triple distill by
going to binary format, but you may
lose human readability (and what
limited editability now remains) in
the process. Besides, most of my files
already do have page makeup times
much faster than mechanical feed
times, leading to a virtually "zero"
page makeready time.

But the whole game starts all over
again when you switch to a 17 PPM
high end printer.

Sigh.

For More Info
More info on PostScript in general

appears in that blue book (Adobe’s
PostScript Cookbook), in the red book
(Adobe’s PostScript Reference Manual
II) and also in my LaserWriter Secrets
book/disk combo. I try to stock these
and several other major PostScript
resources here at Synergetics.

I’ve also posted lots of PostScript
optimization utilities plus detailed
distilling examples to GEnie PSRT.
You can call (800) 638-9636 for voice
connect info.✦

Microcomputer pioneer and guru Don
Lancaster is the author of 27 books and
countless tech articles. Don runs a
no-charge technical helpline found at
(602) 428-4073, besides offering all his
own books, reprints, and his technical
services. He also has a free brochure of
his insider desktop publishing secrets
waiting for you. Your best calling times
are often 8-5 on weekdays, Mountain
Standard Time. Or you can reach Don
by way of Synergetics, at Box 809,
Thatcher, AZ 85552.

